www.rtmj.net > 可逆矩阵怎么判断

可逆矩阵怎么判断

1.行列式不等于02.方程组AX = 0 只有0解3.秩 = 阶数4.特征值全不为05.行向量组线性无关6.列向量组线性无关7.存在另一个B,使 AB = BA = E (定义)

首先,可逆矩阵A一定是n阶方阵 判断方法1. A的行列式不为02. A的秩等于n(满秩)3. A的转置矩阵可逆4. A的转置矩阵乘以A可逆5. 存在一个n阶方阵B使得AB或者BA=单位矩阵

题设不是不可逆,而是根本无法求逆.矩阵不可逆的意思是指该矩阵为奇异矩阵.奇异矩阵必然是一个方阵,其行列式为0.楼主注意只有方阵才可以求逆矩阵.

基本性质教科书中有列出下面是充分必要条件:1. 行列式不等于零2. 等价标准形是单位矩阵3. 可以表示成初等矩阵的乘积4. AX=0只有零解5. 行(列)向量组线性无关6. 行(列)向量组构成R^n的基7. 特征值都不为0满意请采纳^_^

你 题目 错了 cd一样的而且还都是对的最简单 方法用行列式a*b可逆 则|ab|≠0->|a|≠0且|b≠0所以a b均可逆

行列式不得零

其实,有时候用行列式变换,进行判断,比较方便,当然,如果细算的话,也属于判断行列式的值

n 阶方阵 a 可逆的定义是:存在 n 阶方阵 b 使 ab = e ,b 叫 a 的逆矩阵,记作 b = a^-1 .求方阵 a 的逆矩阵的方法主要有:1、a^-1 = 1/|a|a*,其中 a* 是 a 的伴随矩阵.2、在 a 的右侧拼接一个同阶的单位矩阵,(a e),然后进行行初等变换,把前面的 a 化为 e ,后面的就是 a^-1 .通常就这两种吧.如果 a 很特殊,应该还有简单的方法,如二阶方阵求逆,只须主对角交换,副对角交换取相反数,再除以行列式;对角阵直接取对角元素的倒数;正交阵直接转置等.

n阶方阵a为可逆的充要条件是它的行列式不等于0.一般只要看它的行列式就可以啦.(并非任意一个方阵都有可逆矩阵)

网站地图

All rights reserved Powered by www.rtmj.net

copyright ©right 2010-2021。
www.rtmj.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com